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ther test the validity of 6 as a model for reaction center 
chlorophyll.15 

Note Added in Proof. We note that Katz and co-workers 
(Proc. Natl. Acad. ScL, U.S.A., 73, 1791 (1976)), having 
had full access to our data and interpretation, consider a 
structure equivalent to ours as a viable alternative to their 
previous model of P-700. 
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The Absolute Stereochemistries of 
6,15-Dihydro-6,15-ethanonaphtho[ 2,3- c]pentaphene and 
Related Homologues as Determined by Both Exciton 
Chirality and X-Ray Bijvoet Methods 

Sir: 

It is well known that in addition to the x-ray Bijvoet method, 
the circular dichroic Cotton effects due to a chiral exciton 
coupling between two or more chromophores enable one to 

determine the absolute stereochemistry in a nonempirical 
manner.16 In this optical method it is important to choose the 
proper electronic transition of proper chromophores which 
satisfy the following requirements of chiral exciton coupling:7 

(i) large extinction coefficient values in uv spectra; (ii) isolation 
of the band in question from other strong absorptions; (iii) 
established direction of the electric transition moment in the 
geometry of the chromophore; (iv) unambiguous determination 
of the exciton chirality in space, inclusive of the configuration 
and conformation; and (v) negligible molecular orbital over­
lapping between the chromophores. 

This communication reports the very strong chiral exciton 
coupling of the 1Bb transition of polyacene'chromophores 
in (67?,157?)-(+)-6,15-dihydro-6,15-ethanonaphtho[2,3-c]-
pentaphene (1) and the related homologues, 2a and 2b, which 
rigidly meet the above requirements of the exciton chirality 
method. Namely, the allowed 'Bb transition of the component 
chromophore of 1, i.e., anthracene, exhibits a very strong e 
value of the order of 105; emax = 134 300 for 1. The location 
of the present band around 260 nm is sufficiently separated 
from weak 1L3 and 'Lb transitions around 400-320 nm and 
also from the 1Cb transition around 200 nm so that the minor 
contribution from the weak absorption bands can be neglected 
(see Figure 1). Next, the polarization of the 1Bb transition in 
polyacenes is well established to be along the long axis of the 
chromophore. Furthermore, because of the rigidity of the 
present hydrocarbon 1, one can unambiguously determine the 
positive exciton chirality in space (see Figure 1). Finally there 
is no direct conjugation between the two component chromo­
phores, and the contribution of homoconjugation is also neg­
ligible, if any, because of the large exciton dipole-dipole cou­
pling term.8 Thus compound 1 ideally meets the above-men­
tioned criteria. 

The hydrocarbon 1 was synthesized9 from (9RA0R)-
(+) - 1 , 5-dimethoxycarbonyl-9,10- dihydro-9,10-ethanoan-
thracene (3), the absolute configuration of which has been 
established by the x-ray Bijvoet method10 and by chemical 
correlations." Reduction of 3 with NaAlH2(OC2H4OCH3)2 
(SMEAH) in benzene and successive oxidation with activated 
MnO2 in acetone gave dialdehyde 4, mp 128-129.5 0C, which 
was then treated with o-toluyl magnesium bromide in ether, 
followed by oxidation with Jones reagent to afford diketone 
5, mp 151-152.5 0C. Selective oxidation of the methyl groups 
of 5 was achieved by refluxing with KMnO4 in aqueous 
NaOH-pyridine to give dicarboxylic acid 6. Cyclization of 6 
in polyphosphoric acid afforded quinone 7, mp 268-268.5 0C, 
as the sole product; the yield of 7 from 5 was 64%. Reduction 
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Figure 1. Uv and CD spectra of (6R, 15/?)-(+)-6,l 5-dihydro-6,1 5-etha-
nonaphtho[2,3-c]pentaphene (1) (see text for the solvent systems). 

of 7 with zinc powder in alkaline medium gave a strong fluo­
rescent hydrocarbon 1 in solid masses:12 [a]D +1157° (c 0.034, 
dioxane); mass spectrum m/e 406 (M + ) , 378 (M - C2H4); 
NMR (CDCl3) 8 1.79 (br s, 4 H), 5.41 (br s, 2 H), 6.8-8.1 (m, 
12 H), 8.22 (s, 2 H), 8.75 (s, 2 H); ir (KBr) vmax 3040, 1615, 
1150, 874, 740, 467 cm"1; uv (0.08% dioxane in EtOH) Xmax 

391.0 (« 9100), 371.2 (e 11 200), 352.7 (e 9000), 267.2 nm (e 
268 600); CD (0.18% dioxane in EtOH) Ae397.2 = +26.4, 
Ae388I = _ 2 . 3 , Ae378.o = +6.3, Ae362,9 = - 9 . 7 , Ae352.g = 
-14 .5 , Ae268.0 = +931.3, Ac249J = -720.8 . 

The CD spectrum of 1 clearly exhibits very strong positive 
first and negative second Cotton effects due to coupling of the 
1Bb transitions (Ae268.o = +931.3 and Ae249.? = -720.8; ^ ( = 
Aei — Ae2) = +1652.1), the positive sign of the A value being 
in accord with the positive exciton chirality,2,7 i.e., the clock­
wise screwness, between the two long axes of the anthracene 
moieties in 1 (see Figure 1). 

The related homologues 2a, mp 209.5-211.0 0 C, and 2b, mp 
124-126 0C, synthesized9 from 3 also show clearly split Cotton 
effects arising from the 1Bb transition of naphthalene chro-
mophores (Ae240.6 = +371.5, Ae227.o = -149.4 for 2a and 
Ae242.o= +340.3, Ae212.5 = -139.3 for 2b).13 The present data 
thus demonstrate ideal cases of chiral exciton coupling in CD 
spectra, and provide the most unambiguous evidence which 
demonstrates the consistency between nonempirical circular 
dichroic and x-ray Bijvoet methods. The quantitative calcu­
lation of the chiral exciton coupling in these compounds is now 
in progress. 
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Laser Excitation of Spin Forbidden Bands. Triplet 
Photochemistry of Cobalt(III) Ammines 

Sir-
States related to the ground state by a spin forbidden band 

play a very large role in the attempt to account for reaction 
pathways in transition metal photochemistry. Since phos­
phorescence is not generally observed, it is often difficult to 
develop experimental tests of hypotheses concerning "spin 
forbidden states". Direct population of such states by light 
absorption is highly desirable but requires a light source 
meeting two limiting characteristics: (1) the source must be 
intense; (2) the source must be highly monochromatic so that 
irradiation can be at a well-defined wavelength which allows 
for precise determination of the absorbance in the spin for­
bidden band with a limited and calculable contribution from 
absorbance in the tails of more intense spin allowed bands. A 
laser can meet these criteria and should find important uses. 

In this report, we describe the direct population of 3T (Of, 
approximate microsymmetry) states of the d6 Co(III) com­
plexes Co(NH 3 ) 6

3 + and Co(NH3)5Cl2 + using the 647.1-nm 
line of a Spectra Physics krypton ion laser. In these experi­
ments, we have used a Perkin-Elmer polarimeter cell as an 
irradiation vessel and absorbance matched ammonium rei-
neckate for actinometry. Dark controls were run in the ther­
mostat bath used to circulate water around the polarimeter cell. 
The methodology is very close to that of ref 1, and we find good 
agreement for the experiments which overlap ref 1 as a check 
on our approach. Radiation times ranged up to 8 h and involved 
approximately 3% conversion. In the reaction with Fe(CN)6

4 - , 
there is no correction for absorbance by Fe (CN) 6

4 - at 647 or 
514 nm, but correction for product absorption was carried out 
by both graphical approximation and rigorous calculation. 

The population of spin allowed ligand field singlets 1Tig and 
'T2 g (Of1 approximate microsymmetry) of Co(NH 3 ) 6

3 + and 
Co(NH3)5Cl2+ leads to a substitutional photochemistry which 
is to be contrasted to other d6 systems mainly in respect of the 
low total quantum yield (near 10 - 3) .1 The singlet and triplet 
excited states of Co(III) correspond to the ligand field electron 
configurations t2 g

5eg ' and are thought to be appropriate for 
efficient photosubstitution2 in consequence of the population 
of a single a antibonding orbital. The low quantum yield fol­
lowing irradiation of singlet bands has been attributed by some 
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